Source code for sharppy.sharptab.watch_type

from sharppy.sharptab import thermo, utils, interp, params, constants
import numpy as np
import logging

## Routines implemented in Python by Greg Blumberg - CIMMS and Kelton Halbert (OU SoM)
## wblumberg@ou.edu, greg.blumberg@noaa.gov, kelton.halbert@noaa.gov, keltonhalbert@ou.edu

[docs]def heat_index(temp, rh): ''' Heat Index Equation Computes the heat index using the equation obtained by performing multiple linear regression on the table in Steadman 1979. Referenced from: http://www.srh.noaa.gov/images/ffc/pdf/ta_htindx.PDF Parameters ---------- temp : number temperature (F) rh : number relative humidity (%) Returns ------- heat_index : number heat index value in (F) ''' if temp < 40: return temp hi = 0.5 * ( temp + 61.0 + ((temp - 68.0) * 1.2) + (rh * 0.094)) avg = (hi + temp)/2. if avg < 80: return hi #temp = thermo.ctof(prof.tmpc[prof.get_sfc()]) #rh = thermo.relh(prof.pres[prof.get_sfc()], temp, prof.dwpc[prof.get_sfc()]) heat_index = -42.379 + (2.04901523 * temp) + (10.14333127 * rh) - (0.22475541 * temp * rh) - (6.83783e-3 * np.power(temp,2)) \ - (5.481717e-2 * np.power(rh, 2)) + (1.22874e-3 * rh * np.power(temp,2)) + (8.5282e-4 * temp * np.power(rh, 2)) \ - (1.99e-6 * np.power(rh, 2) * np.power(temp, 2)) if rh < 13 and temp > 80 and temp < 112: adjustment = ((13-rh)/4.) * np.sqrt((17 - np.abs(temp - 95))/17.) heat_index = heat_index - adjustment elif rh > 85 and temp > 80 and temp < 87: adjustment = ((rh - 85)/10.) * ((87 - temp)/5.) heat_index = heat_index + adjustment return heat_index
[docs]def wind_chill(prof): ''' Surface Wind Chill Equation Computes wind chill at the surface data point in the profile object using the equation found at: www.nws.noaa.gov/os/windchill/index.shtml Parameters ---------- prof : profile object Profile object Returns ------- wind_chill : number wind chill value in (F) ''' # Needs to be tested sfc_temp = thermo.ctof(prof.tmpc[prof.get_sfc()]) sfc_wspd = utils.KTS2MPH(prof.wspd[prof.get_sfc()]) wind_chill = 35.74 + (0.6215*sfc_temp) - (35.75*(sfc_wspd**0.16)) + \ 0.4275 * (sfc_temp) * (sfc_wspd**0.16) return wind_chill
[docs]def init_phase(prof): ''' Inital Precipitation Phase Adapted from SHARP code donated by Rich Thompson (SPC) This function determines the initial phase of any precipitation source in the profile. It does this either by finding a source of precipitation by searching for the highest 50 mb layer that has a relative humidity greater than 80 percent at the top and the bottom of the layer. This layer may be found either in the lowest 5 km of the profile, and if an OMEG profile is specified in the profile object, it will search for the layers with upward motion. The precipitation type is determined by using a.) the interpolated temperature in the middle of the precipitation source layer and b.) set temperature thresholds to determine the precipitation type. The type may be "Rain", "Freezing Rain", "ZR/S Mix", or "Snow". Parameters ---------- prof : profile object Profile object (omega profile optional) Returns ------- plevel : number the pressure level of the precipitation source (mb) phase : int the phase type of the precipitation (int), phase = 0 for "Rain", phase = 1 for "Freezing Rain" or "ZR/S Mix", phase = 3 for "Snow" tmp : number the temperature at the level that is the precipitation source (C) st : str a string naming the precipitation type ''' # Needs to be tested plevel = 0 phase = -1 # First, determine whether Upward VVELS are available. If they are, # use them to determine level where precipitation will develop. avail = np.ma.where(prof.omeg < .1)[0] hght_agl = interp.to_agl(prof, prof.hght) if len(avail) < 5: # No VVELS...must look for saturated level # Find the highest near-saturated 50mb layer below 5km agl below_5km_idx = np.ma.where((hght_agl < 5000.) &\ (hght_agl >= 0))[0] else: # Use the VV to find the source of precip. below_5km_idx = np.ma.where((hght_agl < 5000.) &\ (hght_agl >= 0) &\ (prof.omeg <= 0))[0] # Compute the RH at the top and bottom of 50 mb layers rh = thermo.relh(prof.pres, prof.tmpc, prof.dwpc)[below_5km_idx] sats = np.ma.where(rh > 80)[0] new_pres = prof.pres[below_5km_idx][sats] + 50. new_temp = interp.temp(prof, new_pres) new_dwpt = interp.dwpt(prof, new_pres) rh_plus50 = thermo.relh(new_pres, new_temp, new_dwpt) # Find layers where the RH is >80% at the top and bottom layers_idx = np.ma.where(rh_plus50 > 80)[0] if len(layers_idx) == 0: # Found no precipitation source layers st = "N/A" return prof.missing, phase, prof.missing, st # Find the highest layer up via the largest index top_most_layer = np.ma.max(layers_idx) plevel = new_pres[top_most_layer] - 25. # Determine the initial precip type based on the temp in the layer tmp = interp.temp(prof, plevel) if tmp > 0: phase = 0 st = "Rain" elif tmp <= 0 and tmp > -5: phase = 1 st = "Freezing Rain" elif tmp <=-5 and tmp > -9: phase = 1 st = "ZR/S Mix" elif tmp <= -9: phase = 3 st = "Snow" else: st = "N/A" return plevel, phase, tmp, st
[docs]def posneg_temperature(prof, start=-1): ''' Positive/Negative Temperature profile Adapted from SHARP code donated by Rich Thompson (SPC) Description: This routine calculates the positive (above 0 C) and negative (below 0 C) areas of the temperature profile starting from a specified pressure (start). If the specified pressure is not given, this routine calls init_phase() to obtain the pressure level the precipitation expected to fall begins at. This is an routine considers only the temperature profile as opposed to the wet-bulb profile. Parameters ---------- prof : profile object Profile object start : number the pressure level the precipitation originates from (found by calling init_phase()) (mb) Returns ------- pos : float the positive area (> 0 C) of the wet-bulb profile (J/kg) neg : float the negative area (< 0 C) of the wet-bulb profile (J/kg) top : float the top of the precipitation layer pressure (mb) bot : float the bottom of the precipitation layer pressure (mb) ''' # Needs to be tested # If there is no sounding, don't compute anything if utils.QC(interp.temp(prof, 500)) == False and utils.QC(interp.temp(prof, 850)) == False: return np.ma.masked, np.ma.masked, np.ma.masked, np.ma.masked # Find lowest obs in layer lower = prof.pres[prof.get_sfc()] lptr = prof.get_sfc() # Find the highest obs in the layer if start == -1: lvl, phase, st = init_phase(prof) if lvl > 0: upper = lvl else: upper = 500. else: upper = start # Find the level where the pressure is just greater than the upper pressure idxs = np.where(prof.pres > upper)[0] if len(idxs) == 0: uptr = 0 else: uptr = idxs[-1] # Start with the top layer pe1 = upper; h1 = interp.hght(prof, pe1) te1 = interp.temp(prof, pe1) tp1 = 0 warmlayer = coldlayer = lyre = totp = totn = tote = ptop = pbot = lyrlast = 0 for i in np.arange(uptr, lptr-1, -1): pe2 = prof.pres[i] h2 = prof.hght[i] te2 = interp.temp(prof, pe2) tp2 = 0 tdef1 = (0 - te1) / thermo.ctok(te1); tdef2 = (0 - te2) / thermo.ctok(te2); lyrlast = lyre; lyre = 9.8 * (tdef1 + tdef2) / 2.0 * (h2 - h1); # Has a warm layer been found yet? if te2 > 0: if warmlayer == 0: warmlayer = 1 ptop = pe2 # Has a cold layer been found yet? if te2 < 0: if warmlayer == 1 and coldlayer == 0: coldlayer = 1 pbot = pe2 if warmlayer > 0: if lyre > 0: totp += lyre else: totn += lyre tote += lyre pelast = pe1 pe1 = pe2 h1 = h2 te1 = te2 tp1 = tp2 if warmlayer == 1 and coldlayer == 1: pos = totp neg = totn top = ptop bot = pbot else: neg = 0 pos = 0 bot = 0 top = 0 return pos, neg, top, bot
[docs]def posneg_wetbulb(prof, start=-1): ''' Positive/Negative Wetbulb profile Adapted from SHARP code donated by Rich Thompson (SPC) This routine calculates the positive (above 0 C) and negative (below 0 C) areas of the wet bulb profile starting from a specified pressure (start). If the specified pressure is not given, this routine calls init_phase() to obtain the pressure level the precipitation expected to fall begins at. This is an routine considers the wet-bulb profile instead of the temperature profile in case the profile beneath the profile beneath the falling precipitation becomes saturated. Parameters ---------- prof : profile object Profile object start : number the pressure level the precipitation originates from (found by calling init_phase()) (mb) Returns ------- pos : float the positive area (> 0 C) of the wet-bulb profile (J/kg) neg : float the negative area (< 0 C) of the wet-bulb profile (J/kg) top : float the top of the precipitation layer pressure (mb) bot : float the bottom of the precipitation layer pressure (mb) ''' # Needs to be tested # If there is no sounding, don't compute anything if utils.QC(interp.temp(prof, 500)) == False and utils.QC(interp.temp(prof, 850)) == False: return np.ma.masked, np.ma.masked, np.ma.masked, np.ma.masked # Find lowest obs in layer lower = prof.pres[prof.get_sfc()] lptr = prof.get_sfc() # Find the highest obs in the layer if start == -1: lvl, phase, st = init_phase(prof) if lvl > 0: upper = lvl else: upper = 500. else: upper = start # Find the level where the pressure is just greater than the upper pressure idxs = np.where(prof.pres > upper)[0] if len(idxs) == 0: uptr = 0 else: uptr = idxs[-1] # Start with the upper layer pe1 = upper; h1 = interp.hght(prof, pe1); te1 = thermo.wetbulb(pe1, interp.temp(prof, pe1), interp.dwpt(prof, pe1)) tp1 = 0 warmlayer = coldlayer = lyre = totp = totn = tote = ptop = pbot = lyrlast = 0 for i in np.arange(uptr, lptr-1, -1): pe2 = prof.pres[i] h2 = prof.hght[i] te2 = thermo.wetbulb(pe2, interp.temp(prof, pe2), interp.dwpt(prof, pe2)) tp2 = 0 tdef1 = (0 - te1) / thermo.ctok(te1); tdef2 = (0 - te2) / thermo.ctok(te2); lyrlast = lyre; lyre = 9.8 * (tdef1 + tdef2) / 2.0 * (h2 - h1); # Has a warm layer been found yet? if te2 > 0: if warmlayer == 0: warmlayer = 1 ptop = pe2 # Has a cold layer been found yet? if te2 < 0: if warmlayer == 1 and coldlayer == 0: coldlayer = 1 pbot = pe2 if warmlayer > 0: if lyre > 0: totp += lyre else: totn += lyre tote += lyre pelast = pe1 pe1 = pe2 h1 = h2 te1 = te2 tp1 = tp2 if warmlayer == 1 and coldlayer == 1: pos = totp neg = totn top = ptop bot = pbot else: neg = 0 pos = 0 bot = 0 top = 0 return pos, neg, top, bot
[docs]def best_guess_precip(prof, init_phase, init_lvl, init_temp, tpos, tneg): ''' Best Guess Precipitation type Adapted from SHARP code donated by Rich Thompson (SPC) This algorithm utilizes the output from the init_phase() and posneg_temperature() functions to make a best guess at the preciptation type one would observe at the surface given a thermodynamic profile. Precipitation Types Supported: * None * Rain * Snow * Sleet and Snow * Sleet * Freezing Rain/Drizzle * Unknown Parameters ---------- prof : profile object Profile object init_phase : int the initial phase of the precipitation (see 2nd value returned from init_phase()) init_lvl : float the initial level of the precipitation source (mb) (see 1st value returned from init_phase()) init_temp : float the initial level of the precipitation source (C) (see 3rd value returned from init_phase()) tpos : float the positive area (> 0 C) in the temperature profile (J/kg) Returns ------- precip_type : str the best guess precipitation type ''' # Needs to be tested precip_type = None # Case: No precip if init_phase < 0: precip_type = "None." # Case: Always too warm - Rain elif init_phase == 0 and tneg >=0 and prof.tmpc[prof.get_sfc()] > 0: precip_type = "Rain." # Case: always too cold elif init_phase == 3 and tpos <= 0 and prof.tmpc[prof.get_sfc()] <= 0: precip_type = "Snow." # Case: ZR too warm at sfc - Rain elif init_phase == 1 and tpos <= 0 and prof.tmpc[prof.get_sfc()] > 0: precip_type = "Rain." # Case: non-snow init...always too cold - Initphase & sleet elif init_phase == 1 and tpos <= 0 and prof.tmpc[prof.get_sfc()] <= 0: #print interp.to_agl(prof, interp.hght(prof, init_lvl)) if interp.to_agl(prof, interp.hght(prof, init_lvl)) >= 3000: if init_temp <= -4: precip_type = "Sleet and Snow." else: precip_type = "Sleet." else: precip_type = "Freezing Rain/Drizzle." # Case: Snow...but warm at sfc elif init_phase == 3 and tpos <= 0 and prof.tmpc[prof.get_sfc()] > 0: if prof.tmpc[prof.get_sfc()] > 4: precip_type = "Rain." else: precip_type = "Snow." # Case: Warm layer. elif tpos > 0: x1 = tpos y1 = -tneg y2 = (0.62 * x1) + 60.0 if y1 > y2: precip_type = "Sleet." else: if prof.tmpc[prof.get_sfc()] <= 0: precip_type = "Freezing Rain." else: precip_type = "Rain." else: precip_type = "Unknown." return precip_type
[docs]def possible_watch(prof, use_left=False): ''' Possible Weather/Hazard/Watch Type This function generates a list of possible significant weather types one can expect given a Profile object. (Currently works only for ConvectiveProfile.) These possible weather types are computed via fuzzy logic through set thresholds that have been found through a.) analyzing ingredients within the profile and b.) combining those ingredients with forecasting experience to produce a suggestion of what hazards may exist. Some of the logic is based on experience, some of it is based on actual National Weather Service criteria. This function has not been formally verified and is not meant to be comprehensive nor a source of strict guidance for weather forecasters. As always, the raw data is to be consulted. Wx Categories (ranked in terms of severity): * PDS TOR * TOR * MRGL TOR * SVR * MRGL SVR * FLASH FLOOD * BLIZZARD * EXCESSIVE HEAT Suggestions for severe/tornado thresholds were contributed by Rich Thompson - NOAA Storm Prediction Center Parameters ---------- prof : profile object ConvectiveProfile object use_left : bool If True, uses the parameters computed from the left-mover bunkers vector to decide the watch type. If False, uses parameters from the right-mover vector. The default is False. Returns ------- watch_types : numpy array strings containing the weather types in code ''' watch_types = [] lr1 = params.lapse_rate( prof, 0, 1000, pres=False ) if use_left: stp_eff = prof.left_stp_cin stp_fixed = prof.left_stp_fixed srw_4_6km = utils.mag(prof.left_srw_4_6km[0],prof.left_srw_4_6km[1]) esrh = prof.left_esrh[0] srh1km = prof.left_srh1km[0] else: stp_eff = prof.right_stp_cin stp_fixed = prof.right_stp_fixed srw_4_6km = utils.mag(prof.right_srw_4_6km[0],prof.right_srw_4_6km[1]) esrh = prof.right_esrh[0] srh1km = prof.right_srh1km[0] if prof.latitude < 0: stp_eff = -stp_eff stp_fixed = -stp_fixed esrh = -esrh srh1km = -srh1km sfc_8km_shear = utils.mag(prof.sfc_8km_shear[0],prof.sfc_8km_shear[1]) if stp_eff >= 3 and stp_fixed >= 3 and srh1km >= 200 and esrh >= 200 and srw_4_6km >= 15.0 and \ sfc_8km_shear > 45.0 and prof.sfcpcl.lclhght < 1000. and prof.mlpcl.lclhght < 1200 and lr1 >= 5.0 and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0: watch_types.append("PDS TOR") elif (stp_eff >= 3 or stp_fixed >= 4) and prof.mlpcl.bminus > -125. and prof.ebotm == 0: watch_types.append("TOR") elif (stp_eff >= 1 or stp_fixed >= 1) and (srw_4_6km >= 15.0 or sfc_8km_shear >= 40) and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0: watch_types.append("TOR") elif (stp_eff >= 1 or stp_fixed >= 1) and ((prof.low_rh + prof.mid_rh)/2. >= 60) and lr1 >= 5.0 and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0: watch_types.append("TOR") elif (stp_eff >= 1 or stp_fixed >= 1) and prof.mlpcl.bminus > -150 and prof.ebotm == 0.: watch_types.append("MRGL TOR") elif (stp_eff >= 0.5 and esrh >= 150) or (stp_fixed >= 0.5 and srh1km >= 150) and \ prof.mlpcl.bminus > -50 and prof.ebotm == 0.: watch_types.append("MRGL TOR") #SVR LOGIC if use_left: scp = prof.left_scp else: scp = prof.right_scp if (stp_fixed >= 1.0 or scp >= 4.0 or stp_eff >= 1.0) and prof.mupcl.bminus >= -50: watch_types.append("SVR") elif scp >= 2.0 and (prof.ship >= 1.0 or prof.dcape >= 750) and prof.mupcl.bminus >= -50: watch_types.append("SVR") elif prof.sig_severe >= 30000 and prof.mmp >= 0.6 and prof.mupcl.bminus >= -50: watch_types.append("SVR") elif prof.mupcl.bminus >= -75.0 and (prof.wndg >= 0.5 or prof.ship >= 0.5 or scp >= 0.5): watch_types.append("MRGL SVR") # Flash Flood Watch PWV is larger than normal and cloud layer mean wind speeds are slow # This is trying to capture the ingredients of moisture and advection speed, but cannot # handle precipitation efficiency or vertical motion # Likely is good for handling slow moving MCSes. pw_climo_flag = prof.pwv_flag pwat = prof.pwat upshear = utils.comp2vec(prof.upshear_downshear[0],prof.upshear_downshear[1]) if pw_climo_flag >= 2 and upshear[1] < 25: watch_types.append("FLASH FLOOD") #elif pwat > 1.3 and upshear[1] < 25: # watch_types.append("FLASH FLOOD") # Blizzard if sfc winds > 35 mph and precip type detects snow # Still needs to be tied into the sfc_wspd = utils.KTS2MPH(prof.wspd[prof.get_sfc()]) if sfc_wspd > 35. and prof.tmpc[prof.get_sfc()] <= 0 and "Snow" in prof.precip_type: watch_types.append("BLIZZARD") # Wind Chill (if wind chill gets below -20 F) # TODO: Be reinstated in future releases if the logic becomes a little more solid. #if wind_chill(prof) < -20.: # watch_types.append("WIND CHILL") # Fire WX (sfc RH < 30% and sfc_wind speed > 15 mph) (needs to be updated to include SPC Fire Wx Indices) # TODO: Be reinstated in future releases once the logic becomes a little more solid #if sfc_wspd > 15. and thermo.relh(prof.pres[prof.get_sfc()], prof.tmpc[prof.get_sfc()], prof.dwpc[prof.get_sfc()]) < 30. : #watch_types.append("FIRE WEATHER") # Excessive Heat (use the heat index calculation (and the max temperature algorithm)) temp = thermo.ctof(prof.tmpc[prof.get_sfc()]) rh = thermo.relh(prof.pres[prof.get_sfc()], temp, prof.dwpc[prof.get_sfc()]) hi = heat_index(temp, rh) if hi > 105.: watch_types.append("EXCESSIVE HEAT") # Freeze (checks to see if wetbulb is below freezing and temperature isn't and wind speeds are low) # Still in testing. To be reinstated in future releases. #if thermo.ctof(prof.dwpc[prof.get_sfc()]) <= 32. and thermo.ctof(prof.wetbulb[prof.get_sfc()]) <= 32 and prof.wspd[prof.get_sfc()] < 5.: # watch_types.append("FREEZE") watch_types.append("NONE") return np.asarray(watch_types)